4th Devon Local Aggregate Assessment 2005-2014

February 2016

Devon County Council

County Hall
Topsham Road
Exeter
Devon
EX2 4QD

Cover photographs (© Devon County Council unless stated otherwise)

Top left: Processing of china clay by-products for secondary aggregates, Lee Moor

Top right: Sand and gravel from the Budleigh Salterton Pebble Beds, Venn Ottery Quarry

Bottom left: Processing of construction and demolition waste for recycled aggregates, Trood Lane, Exeter

Bottom right: Working of limestone at Linhay Hill Quarry, Ashburton (© Dartmoor National Park Authority)

Acknowledgements

The assistance of Devon's mineral operators in providing the necessary data for the preparation of the Local Aggregate Assessment is gratefully acknowledged, as is the input of other stakeholders including other mineral planning authorities and interest groups.

Further Information

This Local Aggregate Assessment has been prepared by Devon County Council on behalf of the five Devon mineral planning authorities (and, for land-won sand and gravel, in discussion with Cornwall Council and Somerset County Council), and is based on aggregates data for the period to 31 December 2014. Reference should be made to Appendix A of the 1st Devon Local Aggregate Assessment for an explanation of the data collection methodology. All editions of the Local Aggregate Assessment are available at www.devon.gov.uk/laa

To discuss the Local Aggregate Assessment further, please contact Andy Hill of Devon County Council on 01392 383000 or mineralsplanning@devon.gov.uk

Further information on the Local/Minerals Plans being prepared by the Devon mineral planning authorities is available through the details provided below:

Dartmoor National Park Authority

Devon County Council

Exmoor National Park Authority

Plymouth City Council

Torbay Council

CONTENTS

EXECU	JTIVE SUMMARY	4
1. IN	TRODUCTION	6
1.1 1.2 1.3	PREPARATION OF THE LOCAL AGGREGATE ASSESSMENT PURPOSE OF THE LOCAL AGGREGATE ASSESSMENT DEFINITIONS	7
2. LA	AND-WON AGGREGATE RESOURCES AND SUPPLY	9
2.1 2.2 2.3 2.4 2.5	Land-won Aggregate Resources Past Sales of Land-won Aggregates Current Availability of Land-won Aggregate Resources The Crushed Rock Landbank The Sand and Gravel Landbank	10 13
3. M.	ARINE AND ALTERNATIVE AGGREGATES	19
3.1 3.2 3.3 3.4 3.5	BACKGROUND	19 21 23
4. US	SES OF DEVON'S AGGREGATE RESOURCES	27
4.1 4.2	USES OF AGGREGATES	
5. A(GGREGATE MOVEMENTS	30
5.1 5.2	PATTERN OF AGGREGATE MOVEMENTS	
6. FU	TURE AGGREGATES SUPPLY	34
6.1 6.2	THE FUTURE CONTEXTLAND-WON, MARINE AND ALTERNATIVE AGGREGATES SUPPLY	36
7. RI	EFERENCES	40
APPEN	DIX A: AGGREGATE FACILITIES IN DEVON	42
APPEN	DIX B: RECYCLED AGGREGATES DATA	44
APPEN	DIX C: CONSULTATION ON THE LAA	45
	IDIX D: EXTRACT FROM SAND AND GRAVEL MEMORANDUM OF	46

EXECUTIVE SUMMARY

E.1 Devon's diverse geology results in a wide range of land-won aggregate resources being available. By-products from the quarrying of china clay, ball clay and slate produce secondary aggregates that, together with processing of construction, demolition and excavation waste for recycled aggregates, provide alternatives to the use of land-won aggregates. The average sales of the different types of aggregates (estimated in the case of recycled aggregates) over the ten and three year periods are illustrated in Table E.1.

Aggregate stream	10 year average sales (million tonnes) (2005- 2014)	3 year average sales (million tonnes) (2012- 2014)
Land-won Crushed Rock	2.392	2.504
Land-won Sand & Gravel	0.584	0.503
Marine	0.048	0.039
Secondary	0.477	0.397
Recycled	1.160*	0.940*
Total	4.661	4.383

Table E1: Annual Average Aggregate Sales (* estimated)

- E.2 Trends in aggregates sales over the past 10 years show a general decline to 2009, with crushed rock accounting for much of the gradual recovery since then as indicated by its three year average being higher than the 10 year figure. Limestone has accounted for an increasing proportion of crushed rock sales, largely displacing igneous materials.
- E.3 At the end of 2014, Devon had crushed rock reserves of 118.9 million tonnes, giving a landbank of 49.7 years, although the landbank for limestone is a little lower at 43.5 years. Sand and gravel reserves amounted to 7.5 million tonnes, with the landbank being 12.8 years. The emerging Devon Minerals Plan proposes two new sand and gravel sites with a combined potential yield of up to 9.2 million tonnes, while the Somerset Minerals Plan allocates an unquantified resource at Whiteball.
- E.4 Subject to a caveat on the accuracy of data for recycled aggregates, sales of secondary and recycled aggregates as a proportion of total aggregate sales show a surprising decline from their peak of 42% in 2008 to 30% in 2014.
- E.5 The AM2014 survey shows that 89% of land-won aggregates quarried in Devon are sold to destinations within the county, with Somerset accounting for most of the remaining sales. However, 15% of secondary aggregates were sold to destinations outside the South West, largely due to demand for their decorative qualities.
- E.6 Future demand for aggregates will be strongly influenced by the level of construction activity, with Devon's local plans providing for an annual rate of house construction of 6,040 over the next 10-15 years, almost double the actual rate of the last ten years. However, demand for aggregates will also be influenced by other factors including fiscal measures and trends in the use of other building materials.

E.7 While Devon has adequate reserves and/or capacity to maintain supply of crushed rock, marine and alternative aggregates over the next 15-20 years, there is a likely need for delivery of further resources of land-won sand and gravel. In addition to monitoring of sales and reserves, consideration will also need to be given to the possibility of permissions for existing reserves lapsing; the need to maintain the supply of the different sands and gravels required for the range of aggregate products; and the relationship between the distribution of reserves and main markets.

1. INTRODUCTION

1.1 Preparation of the Local Aggregate Assessment

1.1.1 The National Planning Policy Framework [NPPF] [DCLG (2012)] introduced a requirement for the preparation of an annual Local Aggregate Assessment [LAA] by mineral planning authorities [MPAs] working individually or jointly. This fourth edition provides updated information using data for the ten year period to the end of 2014.

Figure 1: Mineral Planning Authorities in Devon and adjoining areas

1.1.2 The county of Devon comprises four separate MPAs – Devon County Council, Plymouth City Council, Torbay Council and Dartmoor National Park Authority – together with that part of the area covered by Exmoor National Park Authority lying within Devon (with the remainder of Exmoor falling within Somerset and being included in the Somerset LAA), as shown by the coloured areas in Figure 1. The sub-regional apportionment of the National and Regional Aggregates Guidelines used this 'Devon' grouping rather than

individual MPAs, recognising the small number of quarries within some of the MPA areas and the close relationship between quarries and markets in those areas.

- 1.1.3 For land-won sand and gravel, the Devon LAA includes sales and reserves within the adjoining counties of Cornwall and Somerset, as the limited levels of production and reserves within those areas prevent their separate reporting for confidentiality reasons. This approach reflects the grouping of MPAs previously used in the sub-regional aggregates apportionment for sand and gravel, and which continues to be used in the annual reports of the South West Aggregate Working Party [SWAWP]. To assist in ongoing assessment and monitoring of land-won sand and gravel across the three counties, a Memorandum of Understanding has recently been signed as explained in 2.5.4.
- 1.1.4 The LAA has been prepared by Devon County Council in discussion with the other Devon MPAs, together with Somerset County and Cornwall Councils, and contributes to the evidence base for each of these MPAs. For the purposes of this assessment, 'Devon' should be taken to refer to the historic county comprising the four whole MPAs and part of a fifth referred to in 1.1.2.
- 1.1.5 Preparation of this LAA has also had regard to the practice guidance produced jointly by the Planning Officers Society and Mineral Products Association (2015).

1.2 Purpose of the Local Aggregate Assessment

- 1.2.1 In the context of the guidance provided in the NPPF and DCLG's Planning Practice Guidance [PPG]¹, it is considered that the purpose of the Devon LAA is to provide a rolling evidence base to inform the approach to be taken in the Local Plans of the individual MPAs to the supply of aggregates. This evidence should include information on:
 - a forecast of the demand for aggregates based on a rolling average of 10 years sales data and other relevant local information;
 - an analysis of all aggregate supply options, including the extent of landbanks for land-won aggregates and availability of other forms of aggregates;
 - an assessment of the balance between demand and supply, and the economic and environmental opportunities and constraints that might influence the situation.
- 1.2.2 The LAA does not itself propose the level or composition of aggregate supply to be delivered in Devon or identify the locations from which any new supply should be achieved. Such decisions are the responsibility of the individual MPAs to deliver through their Minerals/Local Plans, informed by the evidence presented in the LAA.
- 1.2.3 The LAA will continue to be published annually to inform development and monitoring of Local Plans, including recent sales and revisions to levels of reserves and the length of landbanks.

_

¹ Available at http://planningguidance.planningportal.gov.uk/blog/guidance/minerals/

1.3 Definitions

1.3.1 This assessment uses the following terminology for aggregate resources:

Aggregates Granular materials used in construction

Land-won aggregates Aggregates quarried from limestone,

sandstone and igneous/metamorphic rocks (collectively termed crushed rock) and from sand and gravel formations and superficial deposits (including beach and estuarial deposits). Also referred to

as primary aggregates

Marine aggregates Sand and gravel dredged from the sea

Secondary aggregates Aggregates derived from the extraction

and processing of non-aggregate minerals (e.g. china clay and ball clay),

or as a by-product of industrial processes (e.g. blast furnace slag,

incinerator bottom ash)

Recycled aggregates Aggregates derived from the processing

of inorganic construction, demolition and

excavation waste [CDEW]

Alternative aggregates A grouping of secondary and recycled

aggregates

2. LAND-WON AGGREGATE RESOURCES AND SUPPLY

2.1 Land-won Aggregate Resources

- 2.1.1 Devon has arguably the most diverse geology of any English county, resulting in a wide range of mineral resources having been exploited for use not only as aggregates but also for a range of industrial purposes, brick manufacture and as building stone.
- 2.1.2 Crushed rock aggregates are currently produced from a range of sandstone, limestone and igneous resources, while sand and gravel is quarried from various 'bedrock' deposits with no superficial deposits presently worked.
- 2.1.3 An assessment of the land-won and secondary aggregate resources in Devon [Scrivener, R & Miles, A J (2010)] was commissioned by Devon County Council, and reference should be made to this for a detailed account of current and potential resources. The resources yielding land-won aggregates within Devon in 2014, together with relevant quarries operational in that year, are outlined in Table 1.

Resource	Geological Formation	Quarries
Limestone	Chercombe Bridge Limestone (Devonian)	Linhay Hill
	East Ogwell Limestone (Devonian)	Stoneycombe
	Plymouth Limestone (Devonian)	Moorcroft
	Westleigh Limestone (Carboniferous)	Westleigh
Sandstone	Pickwell Down (Devonian)	Vyse
	Pilton Shales (Devonian /	Bray Valley
	Carboniferous)	
	Bude (Carboniferous)	Beam, Newbridge,
		Bableigh Wood
	Crackington (Carboniferous)	Knowle
Igneous	Dolerite (Devonian / Carboniferous)	Whitecleaves
Sand and Gravel	Budleigh Salterton Pebble Beds	Rockbeare Hill, Venn
	(Triassic)	Ottery, Town Farm
	Upper Greensand (Cretaceous)	Zig Zag, Babcombe
		Copse
	Aller Gravels (Eocene)	Zig Zag

Table 1: Land-won aggregate resources in Devon, 2014

- 2.1.4 The extent of the geological formations currently yielding sand and gravel, limestone and sandstone is illustrated in Figure 2.1, together with the location of aggregate quarries operational in 2014. While the extent of sandstone resources appears large, it should be noted that these are very variable in quality, and the outcrops with potential economic viability will be much more limited. No indication is given of the location of the currently quarried igneous rocks as their limited extent will not be apparent at this scale of mapping.
- 2.1.5 Up to the early 2000s, sand and gravel had been worked from superficial deposits, notably the river terrace deposits of the Axe valley at Kilmington. While this and other river valleys in Devon have potential river terrace and alluvial resources, their commercial viability is restricted by their limited depth and areal extent. Similar constraints, together with environmental

designations, limit the likelihood of estuarine dredging (formerly undertaken in the Taw/Torridge and Teign estuaries) recommencing.

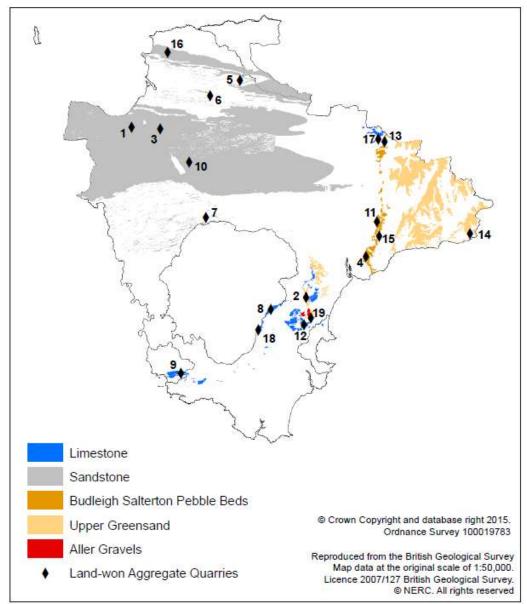


Figure 2: Location of currently-quarried geological formations and land-won aggregate quarries operational in 2014 (key to quarries in Appendix A)

2.1.6 Figure 2 illustrates the uneven distribution of aggregate resources within Devon, with sand and gravel formations occurring in the younger rocks of the south east of the county, and sandstone formations in the north west. The limestone resources that deliver the bulk of Devon's crushed rock output are clustered around Plymouth, Newton Abbot and adjacent to the Somerset border.

2.2 Past Sales of Land-won Aggregates

2.2.1 The NPPF requires a LAA to be based on a rolling average of sales over ten years (together with other relevant local information and an assessment of all supply options), and sales figures for this period are provided in Table 2 and illustrated in Figure 3. For sand and gravel, the figures include small

quantities extracted in Cornwall as that county was previously grouped with Devon for reasons of commercial confidentiality.

Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
CR	3.401	2.599	2.352	2.240	1.711	2.082	2.023	2.412	2.246	2.853
S&G	0.783	0.797	0.710	0.662	0.479	0.455	0.443	0.493	0.485	0.532

Table 2: Sales of land-won aggregates in Devon, 2005-2014 (million tonnes)

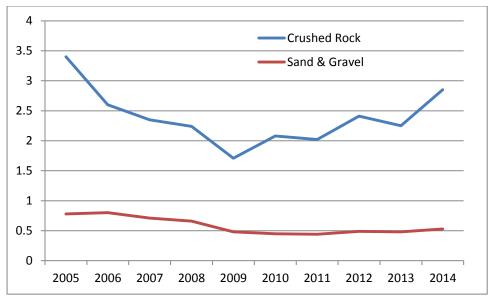


Figure 3: Sales of land-won aggregates (million tonnes) in Devon, 2005-2014

- 2.2.2 Sales of crushed rock over the past 10 years show a steep decline from 2005 to 2009, followed by an overall increase since then, with sales in 2014 being the highest since 2005. In contrast, sand and gravel sales remained flat from 2009 to 2011, with a gradual increase to 2014 when sales still failed to reach 2008 levels.
- 2.2.3 The figures in Table 2 provide ten year averages of **2.392 million tonnes for crushed rock** [CR] and **0.584 million tonnes for sand and gravel** [S&G].
- 2.2.4 The PPG advises that, in addition to the ten year rolling supply, MPAs should consider average sales over the last three years "to identify the general trend of demand as part of the consideration of whether it might be appropriate to increase supply"². For the three years to 2014, the average sales were **2.504** million tonnes for crushed rock (higher than the ten year average) and **0.503** million tonnes for sand and gravel (lower than the ten year average).
- 2.2.5 During the past ten years, the proportion of land-won aggregates accounted for by crushed rock has increased from 80% to 84%, as illustrated in Figure 4, reflecting the pattern of sales highlighted in 2.2.2.

-

² PPG for Local Aggregate Assessments available <u>here</u>

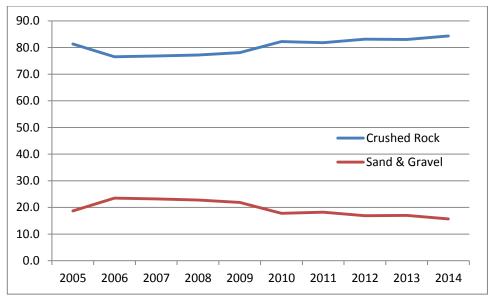


Figure 4: % Share of Devon's Land-won Aggregate Production, 2005-2014

2.2.6 Over the past 10 years, the proportion of crushed rock aggregates sold in Devon accounted for by limestone has increased, reaching 86% between 2012 and 2014. This reflects the lower levels of waste and ease of working in comparison with other rock types, together with the location of the limestone quarries in relation to the main settlements and transport routes. Figure 5 shows the proportions of crushed rock sales accounted for by the three types of rock.

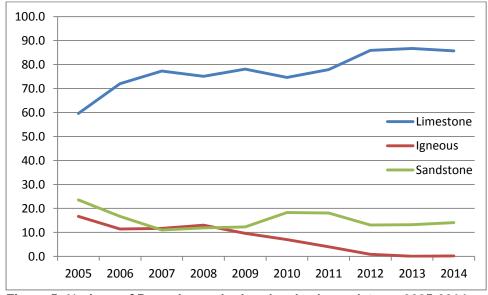


Figure 5: % share of Devon's crushed rock sales by rock type, 2005-2014

2.2.7 For sand and gravel, Figure 6 indicates that the proportion of sales derived from the Budleigh Salterton Pebble Beds gradually increased during the last ten years to around 87% in 2013 before dropping to 81% in 2014, as a result of increased output at a quarry elsewhere in Devon rather than a drop in output from the Pebble Beds. However, the relative proportions derived from the northern (i.e. Whiteball/Town Farm and Hillhead Quarries) and southern (i.e. Blackhill, Venn Ottery and Rockbeare Hill Quarries) parts of the Pebble Beds have changed significantly as shown in Figure 7. While Hillhead Quarry was the largest contributor to supply from the Pebble Beds in the early part of

the 10 year period, extraction has not been undertaken there since 2009, with subsequent sales limited to materials from stockpiles.

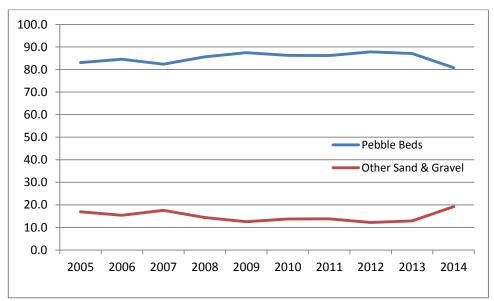


Figure 6: % share of Devon's sand and gravel sales by type, 2005-2014

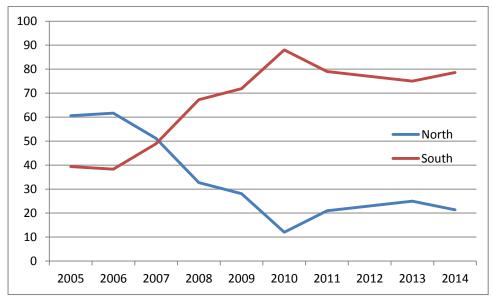


Figure 7: % share of sales from Budleigh Salterton Pebble Beds in northern and southern areas, 2005-2014

2.3 Current Availability of Land-won Aggregate Resources

2.3.1 Devon's existing aggregate quarries (listed in Appendix A) have substantial permitted reserves of crushed rock aggregates, but more limited reserves of sand and gravel. Table 3 shows the permitted reserves available at 31st December 2014 in Devon³.

_

³ Excluding Dormant sites

Resource		Permitted Reserves (million tonnes)
Crushed Rock	Limestone	79.805
	Sandstone	18.262
	Igneous/Metamorphic	20.818
	Total Crushed Rock	118.886
Sand & Gravel		7.502

Table 3: Permitted reserves of land-won aggregates in Devon at 31 December 2014

2.3.2 The NPPF seeks the maintenance of landbanks of land-won aggregates of at least seven years for sand and gravel and at least ten years for crushed rock. Using the averages of sales over the past ten years (2005-2014) as indicated in paragraph 2.9, the land-won aggregate landbanks at the end of 2014 can be calculated from these permitted reserves as follows:

Crushed rock landbank 49.7 years

Sand and gravel landbank 12.8 years

2.4 The Crushed Rock Landbank

2.4.1 The crushed rock landbank is well in excess not only of the ten year minimum required by the NPPF, but also the time horizons of the adopted or emerging Minerals/Local Plans of the Devon MPAs. As shown in Table 4, substantial landbanks exist for the individual types of crushed rock.

Resource	10 Year Average Production	Landbank (Years)
	(million tonnes)	
Limestone	1.833	43.5
Sandstone	0.373	49.0
Igneous/Metamorphic	0.185	112.5

Table 4: Landbanks for crushed rock aggregates in Devon at 31 December 2014

- 2.4.2 While the overall crushed rock landbank is extensive, there are limited available reserves of high-specification aggregates [HSAs] from Devon's operational quarries. HSAs provide materials with polished-stone values [PSV] in the mid to high 60s that are suitable for skid-resistant road-surfacing. Within Devon, only Bray Valley Quarry (sandstone) and Blackhill Quarry (processing gravel materials extracted elsewhere in the Budleigh Salterton Pebble Beds) are currently producing materials with a PSV above 60. A further significant source of HSAs for the Devon market is Pigsdon Quarry in Cornwall, located close to the Devon boundary near Bude, while HSAs have also been transported from quarries elsewhere in England and in South Wales and Ireland.
- 2.4.3 Research [Thompson *et al* (2004)] indicates that Devon's sandstone resources, notably the Bude Formation that outcrops between the Cornwall border and the Exe Valley, are capable of yielding HSAs with PSV above 60 and, in some cases, above 65. While Scrivener & Miles (2010) identified those parts of the Bude and Crackington Formations with potential for high-PSV resources, these areas will need further refinement through site investigation by the minerals industry before the presence of economic resources can be established. The airborne survey work undertaken for the Tellus SW Geophysical Survey may enable the British Geological Survey to

refine their mapping of the northern Devon sandstones to assist in identifying formations with potential for high-PSV resources⁴.

- 2.4.4 The NPPF (paragraph 145) suggests the use of separate landbanks for "aggregate materials of a specific type or quality which have a distinct and separate market", which could encompass HSAs. However, the variability of sandstone resources within a quarry renders it difficult to calculate specific reserves for HSAs, while there are confidentiality issues with identifying a landbank to which a limited number of quarries contribute. It is therefore not proposed to identify a separate landbank for HSAs, but the delivery of further resources will be an issue to be addressed in Devon County Council's Minerals Plan⁵.
- 2.4.5 The current round of periodic reviews of mineral permissions required by Schedule 14 of the Environment Act 1995 is seeing a small number of permissions for crushed rock quarries lapsing due to operators or landowners not submitting new working schemes (including New England and Kersdown Quarries). Notwithstanding these losses of reserves, the considerable length of the crushed rock landbank provides an adequate buffer to ensure it can be maintained for at least the Plan periods for Devon's MPAs.
- 2.4.6 The operator of one of Devon's four limestone quarries, Linhay Hill Quarry in Dartmoor National Park, has indicated [Atkins (2015)] that it intends to submit a planning application to extend the quarry laterally to increase its effective life beyond its remaining 10 years (at current rates of output) by a further 40 years.

2.5 The Sand and Gravel Landbank

- 2.5.1 In contrast to the position with crushed rock, the landbank for sand and gravel calculated using the average of sales over the past ten years, although greater than the seven years minimum required by the NPPF, does not extend to the 2033 end date of Devon County Council's emerging Minerals Plan⁶.
- 2.5.2 While some MPAs distinguish between sharp sand and soft sand in their landbanks and LAA, the nature of Devon's sand and gravel resources does not warrant such a distinction, with resources such as the Budleigh Salterton Pebble Beds and Aller Gravels being capable of providing concreting (sharp) and building (soft) sand together with gravel fractions. Paragraph 145 of the NPPF does, however, also highlight that longer periods for landbanks may be warranted to take account of "locations of permitted reserves relative to markets".
- 2.5.3 Reflecting the pattern of sand and gravel production highlighted in paragraph 2.2.7, approximately 90% of the current sand and gravel reserves are located within the Budleigh Salterton Pebble Beds. However, the major proportion of these are located within the northern area of the Pebble Beds (i.e. Town Farm

⁵ Potential HSA resources in Devon are limited to the area for which Devon County Council is MPA

⁴ Further information on Tellus SW is available at http://www.tellusgb.ac.uk

⁶ The absence of sand and gravel resources from Plymouth, Torbay and the two National Parks limits the scope of existing and potential supply in Devon to the area for which Devon County Council is the MPA, although resources also exist in Somerset

and Hillhead (Houndaller) quarries) with more limited reserves remaining in the southern area. Devon County Council's emerging Minerals Plan [Devon County Council (2015)] proposes sites within the southern and northern areas of the Pebble Beds that together would provide up to 9.2 million tonnes of sand and gravel, while also allowing for maintenance of supply from the Newton Abbot and Exeter areas.

- 2.5.4 The Somerset Minerals Plan also allocates land for sand and gravel extraction, as explained in 2.5.10, although the potential resource is not quantified. No further provision for land-won sand and gravel is made in the emerging Cornwall Local Plan, reflecting the lack of such resources and the abundance of secondary aggregates within Cornwall. Arrangements for the contribution of Somerset and Cornwall to sub-regional supply, and for joint working on assessing and monitoring this supply, are set out in a Memorandum of Understanding signed by the three MPAs, with an extract provided in Appendix D.
- 2.5.5 A characteristic of the Budleigh Salterton Pebble Beds within Devon is that the proportion and size of gravel decreases from south to north, while the proportion of fines (i.e. silt) increases [Scrivener R & Miles A J (2010) p21]. As the size of the quartzite pebbles decreases northwards, it follows that the proportion of the gravel that is crushable, and therefore capable of yielding the higher-specification road surfacing materials, will reduce further. This is illustrated in Table 5 using data for Aggregate Industries' sites in the Pebble Beds, which highlights the higher crushable gravel content at the more southern sites and, notably, the very low proportion of crushable gravel at Houndaller.

Site	Total Gravel %	Total Crushable Gravel %
Blackhill	70	39
Venn Ottery	60	38
Straitgate Farm	54	26
Houndaller	25	5
Penslade	42	13

Table 5: Gravel Content at Pebble Beds Quarries

2.5.6 Potential constraints on the maintenance of the sand and gravel landbank are (a) the limited duration of planning permissions for some of the existing quarries, and (b) the scope for permissions to lapse if the periodic review schemes required by Schedule 14 of the Environment Act 1995 are not submitted. While there are opportunities for operators to seek the extension of these time limits, failure to do so would lead to lapsing of planning permissions and consequent loss of permitted reserves. Table 6 identifies those sand and gravel reserves for which planning permission is due to expire prior to 2033.

Quarry	Permission Time Limit
Hillhead (Houndaller)	31 st December 2018
Uplyme	31 st December 2019
Zig Zag	31 st December 2020
Haldon	31 st December 2022
Town Farm	27 th June 2023
Babcombe Copse/Sands Copse	31 st October 2025

Table 6: Sand and gravel planning permission expiry dates

2.5.7 For some of the quarries listed in Table 6, the extent of remaining reserves and recent levels of sales suggest that the reserves will be worked out by the expiry date. However, as indicated in Table 7, no extraction has taken place over the last four calendar years at Hillhead or Haldon, and it may therefore be the case that, unless working recommences at these sites, some or all of their remaining reserves will 'disappear' unless permission is obtained to extend the life of current consents.

Quarry	Resource	Current Status
Babcombe Copse / Sands Copse, Kingsteignton	Upper Greensand & Aller Gravels	A new operator recommenced working in July 2014, and permission was granted in October 2015 for extraction of the remaining reserves.
Blackhill, Woodbury	Budleigh Salterton Pebble Beds	Extraction of remaining reserves was completed in 2011. Plant is retained for processing materials transported from other sites until December 2016.
Haldon, Kennford	Haldon Gravels	Inactive since 2005, since when the site has changed hands. An application for a revised working scheme and increased annual output was approved in April 2013.
Hillhead, Uffculme	Budleigh Salterton Pebble Beds	No extraction undertaken since 2009, although small quantities were sold from stockpiles until 2014. Potential extraction in 2016 (see 2.5.8).
Rockbeare Hill, Rockbeare	Budleigh Salterton Pebble Beds	The last remaining reserves were worked in 2014 and transported to Blackhill for processing.
Town Farm, Burlescombe	Budleigh Salterton Pebble Beds	Working has moved into the extension area approved in 2010. Materials are transported to Whiteball (Somerset) for processing.
Uplyme	Upper Greensand	No extraction of sand and gravel is currently undertaken, but small quantities have been taken from a stockpile of previously-excavated material that is now exhausted. Working of the overlying chalk for agricultural purposes continues.
Venn Ottery	Budleigh Salterton Pebble Beds	Extraction recommenced in April 2011, with materials transported to Blackhill for processing.
Zig Zag, Kingskerswell	Upper Greensand & Aller Gravels	Extraction continuing with processing on site.

Table 7: Status of permitted sand and gravel sites in Devon

- 2.5.8 The following planning applications have been submitted during 2015 to enable sand and gravel extraction and processing within the Budleigh Salterton Pebble Beds:
 - extraction of sand and gravel at Straitgate Farm, Ottery St Mary (awaiting determination);
 - retention of processing plant at Blackhill Quarry to end of 2021 to process imported sand and gravel from Straitgate Farm (awaiting determination); and

- variation of existing permission at Blackhill Quarry to allow for importation of sand and gravel from Houndaller (Hillhead) Quarry for processing to end of 2016 (awaiting validation).
- 2.5.9 Town Farm forms part of Hanson's Whiteball operation, for which the processing plant lies in Somerset adjacent to its border with Devon. In recent years, extraction of sand and gravel for Whiteball has taken place within Devon, most recently at Town Farm where planning permission was granted in 2010 for an extension with an anticipated life of ten years⁷.
- 2.5.10 Following completion of extraction at Town Farm, it is anticipated that the Whiteball processing plant will be supplied from materials extracted in Somerset, for which Somerset County Council's Minerals Plan identifies a Preferred Area and an Area of Search through the following policy:

Policy SMP4: Provision of sand and gravel

Land adjacent to Gipsy Lane, Greenham has been identified as a Preferred Area and an Area of Search as shown in Map 2 to contribute towards sand and gravel supply in conjunction with Devon County Council.

Planning permission for the extraction of sand and/or gravel in Somerset which is outside the Preferred Area and Area of Search will be granted subject to the applicant demonstrating that the proposed site offers net environmental benefits over those within the Preferred Area or Area of Search.

- 2.5.11 This suggests that, during the latter part of the period to 2033 covered by the LAA, some of the sand and gravel supply previously delivered from Devon will be met from Somerset through continued working at Whiteball.
- 2.5.12 However, this supply from Somerset will be offset by the likely cessation of supply of sand and gravel from Dorset, as Chard Junction Quarry, located close to the boundary with Devon (see Figure 13) and supplying materials into the east of the county, together with Somerset, is anticipated to cease working in 2022/23.
- 2.5.13 Dorset County Council (2015) recently consulted on its Draft Mineral Sites Plan, which proposes the allocation of nine sites to ensure delivery of the county's supply of sand and gravel is maintained. These sites are all in central or eastern Dorset, with the closest at Woodsford being 55 km by road from the easternmost town in Devon, Axminster. For comparison, Axminster is 10.5 km by road from Chard Junction Quarry, which also adjoins the county boundary with Somerset. Given that the average road transportation distance for aggregates is about 40 km [British Geological Survey (2007)], it would appear that the scope for supply of sand and gravel into Devon from Dorset after the closure of Chard Junction Quarry is very limited.

_

⁷ The application identified a reserve of 2 million tonnes with an annual extraction rate of 200.000 tonnes

3. MARINE AND ALTERNATIVE AGGREGATES

3.1 Background

- 3.1.1 In addition to its resources of land-won aggregates, Devon is able to utilise a range of other aggregate resources, with the processing and wharf locations illustrated in Figure 9:
 - marine sand and gravel dredged from the Bristol Channel and landed in northern Devon in small quantities for the local market;
 - secondary aggregates from the processing of by-products of china clay operations at Lee Moor and, to a lesser extent, from ball clay in the Bovey Basin and slate at Mill Hill Quarry; and
 - recycled aggregates from the processing of CDEW at a network of recycling facilities, some of which are located at operational quarries, and at construction sites.
- 3.1.2 This part of the assessment reviews the nature of these sources of aggregates, their recent levels of supply and the current availability of resources and/or capacity for their processing. Figure 8 illustrates the levels of sales of recycled, together with marine and secondary, aggregates over the past ten years.

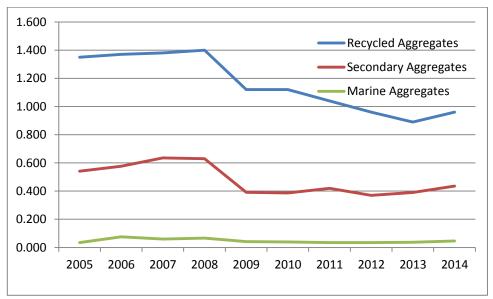


Figure 8: Sales of Marine and Alternative Aggregates in Devon (million tonnes), 2005-2014

3.2 Marine Aggregates

3.2.1 Small quantities of marine-dredged sand and gravel originating from the Bristol Channel are landed at Appledore and Yelland, and sold mainly to the local North Devon market. The total quantity landed in 2014 amounted to 46,194 tonnes. The ten year average landings of marine aggregates for Devon is **47,663 tonnes** (rounded to 0.048 million tonnes, with the three year average being 0.039 million tonnes). This resource thus makes only a small

contribution to Devon's aggregates supply (around 1%), in contrast to the national picture whereby 21% of England and Wales' sand and gravel supply is from marine sources [Mineral Products Association (undated)].

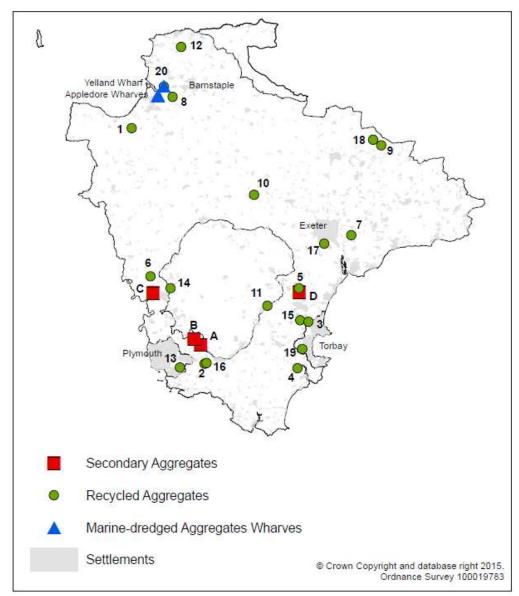


Figure 9: Location of secondary and recycled aggregate facilities and marinedredged aggregate wharves operational in 2014 (key to sites in Appendix A)

- 3.2.2 Marine aggregates are landed in greater quantities at ports in Somerset and Dorset, but are understood not to supply markets in Devon to any significant degree.
- 3.2.3 The two main constraints on the level of marine aggregate supply are the extent and location of licensed dredging areas and the capacity of wharves for landing the materials.

Licensed Dredging Areas

3.2.4 Dredging for marine aggregates is licensed by the Crown Estate, which licenses several areas within the Bristol Channel including that from which materials are landed at Appledore. Within the English Channel, the closest

licensed area to Devon is just west of the Isle of Wight, but no materials from this area are landed at any port west of Poole.

3.2.5 The Crown Estate's statistical summary for 2014 [Crown Estate (2014)] indicates that 1.09 million tonnes were dredged that year from the Bristol Channel, amounting to 49% of the annual licensed tonnage, with 0.46 million tonnes being landed at English wharves, of which Avonmouth accounted for the majority, and the remainder in Wales. The intensity of use of the licensed areas would therefore not appear to be an obstacle to an increased level of dredging to supply Devon if demand warranted it.

Wharf Capacity

3.2.6 No figures are available on the maximum annual throughput of the wharves at Appledore and Yelland that are, or have been, used for landing marine aggregates. However, there are two wharves within the port of Appledore that have been used for unloading marine aggregates in greater quantities than is the case recently, which suggests that, together with the additional capacity at Yelland, adequate capacity is available provided that these remain unconstrained by other development.

3.3 Secondary Aggregates

- 3.3.1 The major source of secondary aggregates in Devon over the past ten years is the by-products derived from the extraction and processing of **china clay** in the Lee Moor area of Devon, which accounts for around 90% of the county's production of secondary aggregates. For each tonne of saleable china clay, up to nine tonnes of other materials are produced, with two main elements capable of use as secondary aggregate:
 - stent (rock), which can be used as general fill or, after crushing and screening, for other aggregate purposes; and
 - tip sand (washed material comprising quartz, unaltered feldspar and mica) which, with grading and washing, can be used for a variety of aggregate purposes including concrete and building sand.
- 3.3.2 In previous years, secondary aggregate operations at china clay sites have been fed from 'as dug' materials, and this remains the case with Tarmac's operation at Headon. Since the contraction of Imerys' Lee Moor china clay operations, Aggregate Industries have supplemented 'as dug' materials with processing of materials from Tip T1 under a planning permission granted in 2009, with an estimated five million tonnes to be worked over 20 years.
- 3.3.3 In May 2015, Ocean Block & Aggregates commenced processing of materials from Tip T2 at Lee Moor for secondary aggregates under permitted development rights, with a view to seeking permission for larger scale working. The company received permission in January 2016 for a concrete block manufacturing facility at Lee Moor to utilise secondary aggregates from that site.
- 3.3.4 Within the **ball clay** workings of the Bovey and Petrockstowe Basins, sand occurs as interburden within the clay seams and has been tipped as waste. Sand from the Bovey Basin is processed for secondary aggregate and

horticultural use by Sibelco at their Preston Manor works. In 2014, sand was also removed from Imerys' Stover quarry for use by a local aggregates supplier.

- 3.3.5 Mill Hill Quarry works **slate** for building stone purposes, and processes some of the by-products for secondary aggregate purposes, albeit on a small scale in comparison with the china clay secondary aggregate operations.
- 3.3.6 The annual sales of secondary aggregates shown in Table 8 give a ten year average of **0.477 million tonnes** (and a three year average of 0.397 million tonnes), although they have been at a lower level from 2009. Figure 8 illustrates these sales alongside those for marine-dredged and recycled aggregates.

2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
0.541	0.576	0.635	0.630	0.391	0.387	0.420	0.370	0.387	0.435

Table 8: Sales of secondary aggregates in Devon, 2005-2014 (million tonnes)

- 3.3.7 In addition to the existing sources of secondary aggregates outlined above, other potential sources that may be available from within Devon in the future are:
 - the recycling of incinerator bottom ash derived from waste incineration in Devon, with the Exeter facility becoming operational in July 2014 and Plymouth in the final stages of commissioning in autumn 2015 (although no facility for the processing of this material currently exists within Devon); and
 - secondary aggregates from the processing of waste from tungsten and tin extraction at Drakelands Mine, near Plymouth, which commenced extraction in summer 2015. The planning permission allows for the sale of up to 150,000 tonnes of secondary aggregates each year, although future production will be limited by constraints of quality and competition from other secondary aggregate sources in the area, together with a requirement for much of the waste rock to be used in the construction of the mine waste facility.
- 3.3.8 A further source of secondary aggregate imported into Devon at present is blast furnace slag from Port Talbot in South Wales. This is transported by sea and landed at Teignmouth for use as a cement additive/substitute, and is also capable of use as an aggregate.
- 3.3.9 The location of the facilities for production of secondary aggregates is illustrated in Figure 9. With production of land-won sand and gravel concentrated in the eastern part of Devon, the china clay operations in the Lee Moor area are well-placed to supply sand and other secondary aggregates to Plymouth and south west Devon.
- 3.3.10 Potential physical constraints on future growth in the level of supply of secondary aggregates include the continued availability of raw materials for processing and the capacity of the processing plant. However, neither of these are anticipated to limit potential growth in secondary sales in Devon due to the ready availability of tipped materials in addition to 'as dug' material, together with the spare capacity of plant.

3.4 Recycled Aggregates

- 3.4.1 The waste arising from construction, demolition and excavation activity comprises a range of materials, of which the 'hard inert' elements (e.g. concrete, bricks, stone, road planings, rail ballast and glass) can be recycled for use as aggregates. Other elements of CDEW, due to their 'soft' and/or organic nature (e.g. soil, timber and plasterboard), are unsuitable for aggregate use but can be recovered or recycled for other beneficial uses. The most recent national report on CDEW [Defra (undated] estimated that around 45% of the total arisings have been recycled for aggregate use.
- 3.4.2 Robust data on arisings of CDEW and the quantities of recycled aggregates derived from it are difficult to obtain, particularly for the county level. It is disappointing that the Government has not undertaken any recent surveys of these materials, and that some minerals and waste operators have not responded to surveys by Devon County Council. Estimates have therefore been developed from previous national and regional surveys, with assumptions made about the proportions produced in Devon, together with the partial results of the County Council's surveys. The methodology used to calculate recycled aggregate sales in this iteration of the LAA differs from that used in previous years, and this is explained in Appendix B. The resulting figures for the past ten years are provided in Table 9, with the ten year average being 1.16 million tonnes (and the three year average being 0.94 million tonnes).

2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
1.35	1.37	1.38	1.40	1.12	1.12	1.04	0.96	0.89	0.96

Table 9: Estimated sales of recycled aggregates in Devon, 2005-2014 (million tonnes)

- 3.4.3 The gradually increasing sales in recycled aggregates from 2004 to 2008 suggested by these estimated figures appears to be the result of a balance between a generally downward trend in the annual arisings of CDEW, due to more efficient site management, and an increasing rate in the proportion of waste that is recycled. The latter factor is likely to have been influenced by the dual fiscal measures of the Aggregates Levy and Landfill Tax.
- 3.4.4 From 2008 onwards, a levelling off in the rate of recycling combined with a reduction in the volume of waste generated by the construction sector has resulted in lower sales of recycled aggregates, reflected in a similar pattern for secondary aggregates. However, it should be recognised that, unlike secondary aggregates for which reliable data are available, analysis of trends in recycled aggregate sales is hindered by the poor data available.
- 3.4.5 The recycling of CDEW in Devon is undertaken at two main types of site:
 - fixed recycling sites, usually at a quarry, inert landfill site or waste transfer station, with aggregates sold on the open market and/or utilised in materials such as concrete produced at the same site; and
 - temporary construction sites, with mobile plant being used to process the materials arising from demolition for use either on the same site (e.g. as construction fill or hardcore) or for sale off-site.

- 3.4.6 As indicated in Figure 9, facilities for recycled aggregate are generally clustered close to the main urban areas of Plymouth, Torbay/Newton Abbot, Exeter and Barnstaple, providing a comprehensive network that helps in providing local supplies.
- 3.4.7 Analysis based on a partial survey of recycling site operators together with review of limits in planning permissions and/or environmental permits suggests that Devon's operational CDEW recycling sites have a capacity for production of recycled aggregates in the region of 2 million tonnes. This capacity is comfortably above the highest annual production given in Table 8, although it should be borne in mind that fixed recycling sites only account for a proportion (estimated at two thirds) of the total volume of recycled aggregates produced in Devon. The existing fixed recycling sites therefore have substantial spare capacity to cater for any increased demand that may occur in the future.

3.5 Synthesis of Aggregate Sales

3.5.1 To enable comparison of trends for land-won, marine and alternative sources of aggregates, Figure 10 illustrates the total annual sales for each aggregate stream, while Figure 11 shows the proportion of the total aggregate sales accounted for by each stream.

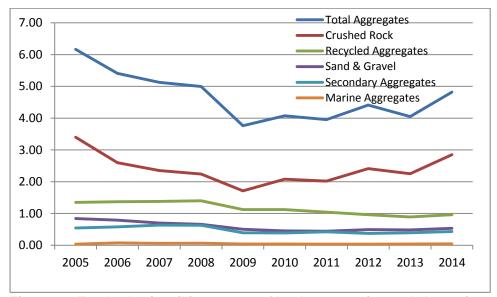


Figure 10: Total sales in million tonnes of land-won, marine and alternative aggregates in Devon, 2005-2014

- 3.5.2 The key points from these Figures are:
 - overall sales of aggregates declined steadily from 2005 to 2009, but the trend since 2009 is a more gradual upward one with sales only now approaching their 2008 level; and
 - sales of land-won sand and gravel and alternative aggregates dropped steeply in 2009 and have remained broadly flat since then, suggesting that crushed rock accounts for much of the recovery in sales since 2009, as illustrated in Figure 11 by its share increasing from around 45% in 2008/2009 to almost 60% in 2014.

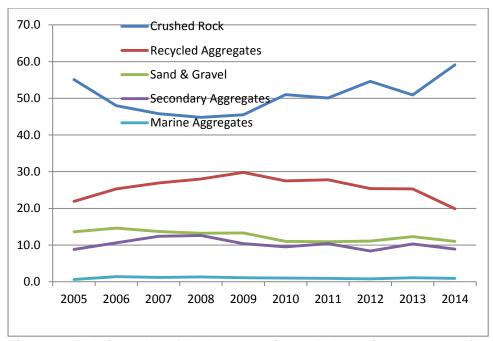


Figure 11: Relative sales of land-won, marine and alternative aggregates in Devon as % of total sales, 2004-2013

3.5.3 Figure 12 illustrates the relative shares of total aggregate sales for land-won and marine/alternative aggregates over the past ten years. The generally downward trend in the market share of land-won aggregates until 2008 was mirrored by the upward trend for marine/alternative aggregates from 31% of total aggregates in 2005 to 42% in 2008; however, since 2008 the contribution of alternative aggregates has declined back to 30%. [It should be noted that the contribution of recycled aggregates to the total sales of alternative aggregates is based on estimated figures developed from national data as explained in Appendix B, and the reliability of these figures is therefore qualified]

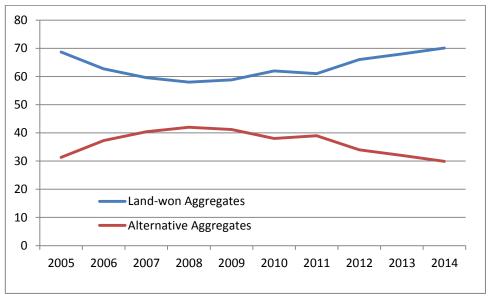


Figure 12: Relative sales of land-won and marine/alternative aggregates in Devon, 2005-2014

3.5.4 The general trends shown in Figure 12 suggest a reversal from 2008 of the previously increasing level of substitution of land-won aggregates by alternative aggregates, and it is unclear why this has occurred, given the continued existence of the Aggregates Levy and the availability of adequate capacity for production of secondary and recycled aggregates. For comparison, figures from the Mineral Products Association (2015) show a steady incremental increase in the share of national aggregates sales accounted for by secondary and recycled aggregates from 25% in 2005 to 29% from 2011 onwards.

4. USES OF DEVON'S AGGREGATE RESOURCES

4.1 Uses of Aggregates

- 4.1.1 Aggregates are used for a wide range of construction uses, with concrete (both ready-mixed concrete and the manufacture of concrete products) and road construction and maintenance being the major uses for Devon's landwon and secondary aggregates. Other uses include mortar, armourstone and constructional fill.
- 4.1.2 As explained in more detail in British Geological Survey (2007), an aggregate's suitability for a specific use is dependent on its physical and mechanical attributes, including strength, durability, porosity, particle shape, presence of impurities and abrasion resistance. The desired combination of these qualities will vary between different uses, with the most stringent specifications for structural concrete and road surfacing only capable of being met by a limited range of aggregate resources. For lower-specification uses, requirements can be met by a wider range of materials including secondary and recycled aggregates.
- 4.1.3 In addition to the relative physical properties, the choice of aggregate to be used for a particular purpose will also be influenced by matters such as ease of working and the proportion of waste generated, together with economic factors including proximity of the resource to markets (influencing transport costs), fiscal measures such as the Aggregates Levy, and the compliance of aggregates with technical standards.
- 4.1.4 The AM2014 survey provides an indication of the uses to which Devon's aggregates were put:
 - the main uses for land-won sand and gravel were for screened and graded gravels (36%), concrete (28%), other constructional uses (25%), mortar (6%) and asphalt (4%);
 - crushed rock aggregates were used for 'other constructional uses' (34%), uncoated roadstone (23%), other screened and graded aggregates (23%), concrete (12%) and asphalt (7%);
 - secondary aggregates were mainly used for concrete (48%), with other uses being 'other constructional uses' (29%), screened and graded aggregates (15%), road construction (2%) and mortar (2%).
- 4.1.5 The limited quantity of marine-dredged sand and gravel was used for concrete. While no comprehensive data are available for the uses of recycled aggregates, information from the site operators in the limited number of survey forms returned indicates that a range of aggregates were supplied ranging from dust through pipe-bedding sand, grit and gravel through 20mm, 40mm and up to 75mm products. Some sites sold materials to recognised standards for sub-base aggregates.

4.2 Potential for Substitution of Aggregates

- 4.2.1 Within Devon, there is potential for increased substitution between the different types of aggregate, including the use of crushed rock fractions instead of sand and gravel, as well as secondary and recycled aggregates replacing land-won sand, gravel and crushed rock. However, it would be unwise to assume that full substitution of one resource by another is feasible, or always desirable, as technical requirements may constrain this. One example of the implications of substitution of aggregates is that secondary aggregates from china clay by-products require an increased level of cement when used in concrete than is the case with land-won aggregates [British Geological Survey (2007)]. A further example is that, while secondary and recycled aggregates include a wide range of aggregate materials that may be suitable for use in road construction, they may not possess the exacting physical properties, including resistance to polishing, that are required for road surfacing.
- 4.2.2 In addition, the limited spatial occurrence of some resources, such as secondary aggregates (the major proportion of which are derived from the china clay operations near Plymouth) would result in increased transport costs (both financial and environmental) if they were to be substituted for land-won resources that are located closer to areas of demand in other parts of Devon.
- 4.2.3 Paragraph 2.5.1 highlighted that the land-won sand and gravel landbank in Devon did not extend to the 2033 end date of Devon County Council's Minerals Plan, suggesting a shortfall in supply during that period. Since over 80% of Devon's land-won sand and gravel supply is derived from the Budleigh Salterton Pebble Beds (paragraph 2.2.7), it is useful to consider the scope for substitution of that resource by other aggregates available within Devon.
- 4.2.4 Information from the minerals industry [Devon Stone Federation (2012)] highlights the particular qualities of the Pebble Beds resource:

The extracted mineral is crushed and the resulting constituents are blended in a controlled manufacturing process to provide exactly what is required to comply with the various EN standards required by markets which include concrete and concrete screeds, Hot Rolled Asphalt, Asphaltic Concrete and building sands...The pebble beds provide a consistent feed both in terms of grading and geological makeup with >95% of the extracted mineral being guartzite.

The quartzite aggregate of the pebble beds has a significantly lower water absorption than its competitors due to its uniform mineralogy, overall grading and grain shape, lack of composite grains and lack of mica, making it a much more efficient and durable material than other local aggregates, especially when used in Asphalt materials. It has proven to provide excellent skid resistance when used in surface course applications and this material will outperform most other aggregates available within the South West.

Furthermore, due to the sharp and hard nature of the quartzite mineral from the pebble beds, the grit material that is produced from the

manufacturing process is the only material that Devon County Council has approved and specified for the gritting of SMA [Stone Mastic Asphalt] on Devon's road network.

- 4.2.5 Of the potential alternatives to this resource, the Devon Stone Federation advise that china clay secondary aggregates have a more limited grading (biased in the 2-4mm size fraction), together with a more variable mineral make-up and weathering. One outcome of these properties is the increased water demand and proportion of cement required in concrete.
- 4.2.6 Another alternative resource, crushed rock fines, are also considered to be gap-graded, for which rebalancing to match product grading would result in significant volumes of unusable waste. While better in terms of water absorption than china clay aggregates, this is still a significant factor for crushed rock fines.
- 4.2.7 The information provided by the Devon Stone Federation has been verified by Devon County Council's Materials Laboratory, which also advises that quartzite from the Pebble Beds has been trialled and approved for use in high friction surfacing. When used as a surface dressing aggregate (8mm through grade), the quartzite achieves an effective PSV of 60-64, reducing Devon's reliance on gritstone imported from elsewhere in the UK.

5. AGGREGATE MOVEMENTS

5.0.1 This Chapter considers two aspects relating to the movement of aggregates: firstly, the pattern of movements of aggregates between Devon and other parts of the UK and, secondly, the means by which aggregates are transported within and beyond Devon, including the use of rail and sea.

5.1 Pattern of Aggregate Movements

- 5.1.1 Information on the destinations of aggregates sold from Devon's quarries is available for 2014 from the AM2014 aggregates survey, and will become available for inward movements after March 2016 (in the interim, inward movement data for 2009 are used). Broadly speaking, these data suggest that Devon is relatively self-sufficient in aggregates with lower levels of imports and exports than many other counties.
- 5.1.2 Table 10 provides details of the destinations of land-won, secondary and marine aggregates sold from Devon's quarries and wharves in 2014. Around 89% of land-won materials remained in Devon, with most of the 'exported' materials being sold to markets within the adjoining counties of Somerset and, to a lesser extent, Cornwall.

Resource		Total	Devon	Cornwall, Dorset & Somerset	Rest of South West Region	Outside South West Region
Sand and	mt	0.53	0.47	0.05	< 0.01	< 0.01
Gravel	%		89.2	10.5	0.2	0.1
Crushed	mt	2.85	2.53	0.29	<0.01	0.03
Rock	%		88.8	10.1	0	1.1
Secondary	mt	0.43	0.33	0.02	0.02	0.07
Aggregates	%		76.6	4.1	3.8	15.5
Marine	mt	0.05	0.03	0.01	0	0
Aggregates	%		75.7	24.3	0	0

Table 10: Destinations for land-won and secondary aggregates from Devon, 2014 (mt = million tonnes)

- 5.1.3 For secondary aggregates, sales within Devon accounted for a significantly lower proportion, 77%, with sales to destinations outside the South West region being 15% of the total (in contrast to 2009 when the equivalent figure was 3%). Discussion with mineral operators suggests that sales of china clay by-products to more distant markets outside the South West are as a result of block manufacturers placing a premium on the decorative qualities of these sands and grits, rather than them being used for more general aggregate purposes.
- 5.1.4 No comprehensive information is available on the destination of recycled aggregates produced in Devon, but the limited responses received from operators of recycling facilities indicate that their products were sold to destinations within that part of Devon surrounding the site.
- 5.1.5 The AM2009 collation report [Mankelow *et al* (2011)] identified that Devon 'imported' 93,000 tonnes of land-won sand and gravel and 426,000 tonnes of crushed rock in 2009 from elsewhere in England and Wales. For land-won sand and gravel, virtually all of the imported materials originated from

elsewhere within the South West region, while for crushed rock 89% of the imported materials were from the South West region with the remaining 11% being from a range of locations in England and Wales with a small quantity from elsewhere. As indicated, the equivalent data for 2014 are awaited.

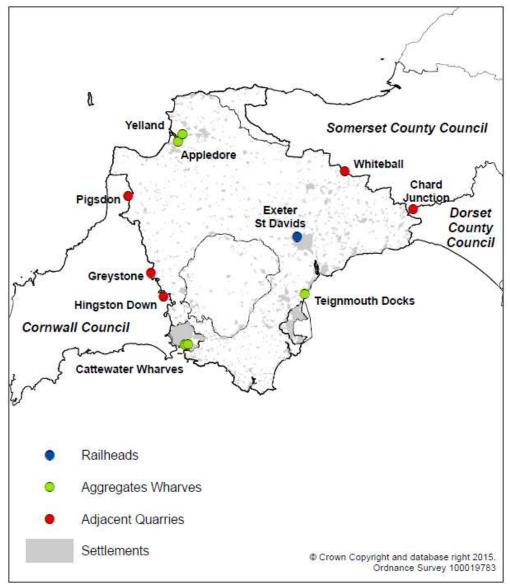


Figure 13: Operational Aggregate Transportation Infrastructure in Devon and Location of Nearby Aggregate Quarries

- 5.1.6 Discussions with other MPAs and the minerals industry provide some further detail on cross-boundary flows of aggregates within the constraints of commercial confidentiality:
 - the main destinations for the relatively small quantities of sand and gravel and crushed rock aggregates exported from Devon are Somerset (mainly the south west of the county around Taunton) and, to a lesser extent, Cornwall;
 - the main destinations for secondary aggregates from Devon are Cornwall (most likely the eastern part of the county in the light of the availability of

substantial secondary aggregate resources in the St Austell area), and a range of destinations outside the South West region as noted in 5.1.3;

- much of the sand and gravel imported into Devon is likely to have originated in Dorset, which has an operational quarry located close to the eastern boundary of Devon (see Figure 13) in an area of the latter where there no operational quarries;
- the substantial quantity of crushed rock aggregates imported into Devon is partly due to an absence of quarries producing the highest specification aggregates, with Cornish quarries close to the boundary with Devon being the main source (see Figure 13), supplemented by imports from elsewhere in England and South Wales; in addition, limestone from the Mendips is transported by rail to Exeter.
- 5.1.7 Adjoining counties provide marine aggregates through landings at Poole (Dorset) and Dunball, near Bridgwater (Somerset). The AM2009 collation report indicates that, while 94% of the 32,000 tonnes landed at Dunball was sold to destinations within Somerset, only 44% of the 78,000 tonnes landed at Poole stayed within Dorset, with 34% going elsewhere in the South West (although this is unlikely to include Devon) and 22% to destinations outside the region.

5.2 Transportation of Aggregates

5.2.1 Movement of aggregates between quarries and markets within Devon is wholly by road due to the short distances involved and the general lack of suitable rail infrastructure at quarries. However, there are examples of the use of rail and water for aggregate transport to and from the county (locations indicated in Figure 13). As indicated in Figure 14, wharves in Plymouth are used for the shipping of limestone from Moorcroft Quarry, secondary aggregates from china clay operations together with ball clay and china clay minerals, cement and, on occasion, aggregates from Cornwall.

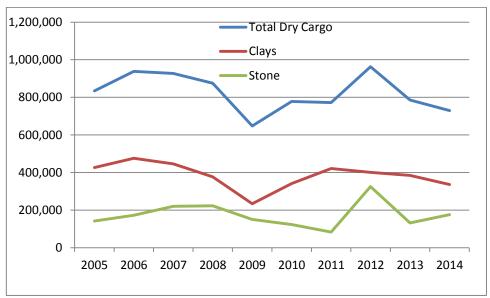


Figure 14: Dry Cargo handled at Cattewater Wharves, Plymouth 2005-2014 (tonnes)

5.2.2 Secondary aggregates in the form of blast furnace slag are imported through Teignmouth Docks, and imports of crushed rock from Scotland through Yelland Wharf commenced in 2013. Limestone from Whatley Quarry in Somerset is brought by rail to Exeter for local sale.

Rail Infrastructure

- 5.2.3 The viability of using rail for the transportation of aggregates tends to be limited to the movement of materials in bulk on an inter-regional basis, with examples being major crushed rock quarries in Somerset and Leicestershire supplying markets in the South East of England. In Devon, the relatively small output of its quarries, the distance to major markets and presence of intervening supply areas such as the Mendips, and constraints with the county's rail infrastructure together limit the feasibility of transporting aggregates by rail.
- 5.2.4 Only one aggregate quarry in Devon Meldon Quarry in Dartmoor National Park is rail-linked, and this has supplied rail ballast for use in the south of England. The operator secured a variation to its planning permission to allow minerals from its operations elsewhere in Devon and Cornwall (including secondary aggregates) to be brought to Meldon by road for onward movement by rail. However, the quarry and railhead were mothballed in 2011.
- 5.2.5 Devon currently has one rail depot used for the importation of aggregates from outside the county, with Hanson transporting limestone from their Whatley Quarry in Somerset to Exeter St Davids.
- 5.2.6 Of the non-aggregate mineral resources that yield secondary aggregates from their by-products, only the ball clay resource in the Bovey Basin has the potential for being rail-linked. The Heathfield branch line north west of Newton Abbot has been used in the past for transportation of ball clay, and is currently used for the outward movement of timber; it could potentially be used for the transportation of ball clay sand. However, the small quantities of these secondary aggregates that are currently produced would limit the viability of movement by rail.

6. FUTURE AGGREGATES SUPPLY

6.0.1 The National Planning Policy Framework requires that a LAA be "based on a rolling average of 10 years sales data and other relevant local information, and an assessment of all supply options (including marine, secondary and recycled sources)". It is anticipated by the NPPF that MPAs will make provision for the land-won and other aggregates sources identified in their LAA in their minerals plan.

6.1 The Future Context

- 6.1.1 Future demand for aggregates as a whole will be influenced by two main factors:
 - the future level of construction activity, including new development and maintenance of existing infrastructure in Devon (and, to a more limited extent, in adjoining areas served by Devon's aggregate producers); and
 - the intensity of aggregate use in construction activity, including the extent to which aggregates are replaced by other materials such as timber, steel and glass.

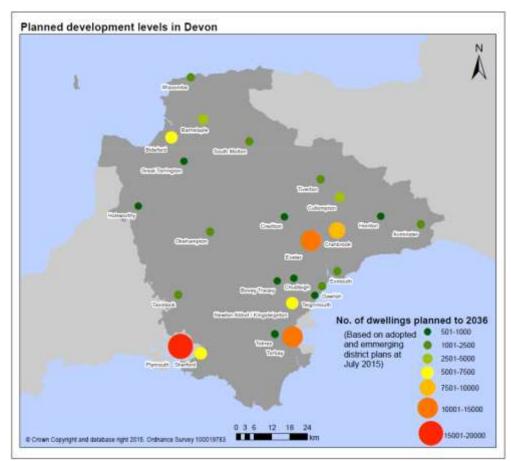


Figure 15: Planned housing development levels in Devon to 2036

6.1.2 Forecasts produced by Devon County Council indicate that the county's population is likely to grow from 1,153,149 in 2013 to 1,334,261 in 2031, an

increase of 16%. Accommodating this forecast population increase, together with associated employment and other development and infrastructure, will be achieved through development planned for by Devon's district, unitary and national park authorities. The adopted and emerging Local Plans within Devon provide for an annual level of house construction of 6,040 over the next 10-15 years, which is almost double Devon's actual average of 3,060 dwellings constructed per year for the 10 years to 2014/15. Figure 15 illustrates the location and scale of the main areas of housing development identified in Devon's Local Plans for the period to 2036.

- 6.1.3 The December 2014 edition of the Government's National Infrastructure Plan [HM Treasury (2014)] identifies several projects within or close to Devon, including the A303/A30/A358 corridor; the Met Office supercomputer at Exeter; South Devon Link Road; resilience of the rail line at Dawlish and potential alternative routes; and Hinkley Point C power station. In addition, the National Infrastructure Plan identifies general initiatives in fields including communications, waste and energy that may have implications for Devon. The Chancellor's 2015 Autumn Statement [HM Treasury (2015)] identified further funding and development opportunities including the North Devon Link Road, Network Rail's Western Flood Resilience work and a new Enterprise Zone in the Heart of the South West.
- 6.1.4 The National Infrastructure Plan will be monitored as an influence on demand for aggregates within Devon and adjoining areas; however, its value in considering future aggregate requirements in Devon is limited by its lack of detail on the scale and timing of development.
- 6.1.5 In addition to overall demand for aggregates, future supply requirements in Devon will be influenced by factors affecting the market share of the different streams available (i.e. land-won crushed rock and sand and gravel, and marine and alternative aggregates). These factors include:
 - the influence of national fiscal measures such as the Aggregates Levy and Landfill Tax;
 - the procurement decisions of developers in specifying materials;
 - the development of quality protocols for aggregates and their influence on perceptions of alternative aggregates;
 - the costs of transporting alternative aggregates to markets more distant from their area of production; and
 - the extent to which it is technically feasible to substitute one aggregate stream for another.
- 6.1.6 The range of factors identified above indicates that it would be difficult to accurately model future demand for aggregates at the county level as a refinement of the basic ten year average, particularly as some of these factors are not easily quantifiable. However, the projected rate of house construction in Devon and anticipated infrastructure works, if realised, would suggest strong growth in future demand for aggregates. The scope for the maintenance and, if warranted by future demand, enhancement of recent levels of production is assessed below.

6.2 Land-won, Marine and Alternative Aggregates Supply

6.2.1 Preceding chapters have presented data on past sales of land-won aggregates and alternative sources, and Table 11 collates the 10 year average sales for the different streams of aggregates supply in Devon between 2004 and 2013. The ability for these levels of supply to be maintained for the Devon MPA's plan periods, or to meet increased demand if it were to occur, is considered below for individual aggregate streams. Table 11 also includes averages for sales over the last three years to enable identification of "the general trend of demand as part of the consideration of whether it might be appropriate to increase supply" as advocated by DCLG's Planning Practice Guidance.

Aggregate stream	10 year average sales (million tonnes) (2005-2014)	3 year average sales (million tonnes) (2012- 2014)	
Land-won Crushed Rock	2.392	2.504	
Land-won Sand & Gravel	0.584	0.503	
Marine	0.048	0.039	
Secondary	0.477	0.397	
Recycled	1.160*	0.940*	
Total	4.661	4.383	

Table 11: Annual Average Aggregate Sales (* estimated)

Land-won Crushed Rock

6.2.2 As indicated in Table 4, all types of crushed rock resource (i.e. limestone, sandstone and igneous/metamorphic rock) have landbanks of 43 years or more, indicating that not only can recent levels of production be maintained, but significant increases in output could be accommodated if warranted by demand. Average sales over the past three years are higher than for the ten year period, indicating an upward trend in sales of crushed rock that will need to be monitored. However, there is limited supply of high-specification aggregates from quarries within Devon, resulting in a need to import these materials from elsewhere in the UK, and this is an issue to be addressed by Devon County Council in its Minerals Plan.

Land-won Sand and Gravel

- 6.2.3 Table 3 identifies the quantity of permitted reserves of land-won sand and gravel at the end of 2014 as 7.502 million tonnes which, using the ten year average sales of 0.584 million tonnes in Table 10, provides a landbank of 12.8 years. While average sales over the past three years of 0.503 million tonnes suggest that there is not a significant upward trend in sales, this landbank does not extend to the 2033 horizon of Devon County Council's Minerals Plan, indicating a potential need for this Plan to provide for further sand and gravel resources if the minimum landbank of seven years is to be maintained to and beyond 2033.
- 6.2.4 While sand and gravel requirements will be subject to monitoring through future iterations of the LAA, projecting the current ten year average of 0.584 million tonnes forward over the Minerals Plan period from 2015 to 2033 (19 years) gives a potential requirement of 11.096 million tonnes which, after accounting for the existing permitted reserves (7.502 million tonnes), leaves a

- potential shortfall of 3.594 million tonnes. Maintenance of a seven year landbank at 2033 would require a further 4.088 million tonnes.
- 6.2.5 While any future reduction in sales of sand and gravel will have the effect of lowering the rolling ten year average and therefore extending the length of the landbank, any future increase in demand for land-won sand and gravel would conversely have the effect of shortening the landbank further.
- 6.2.6 Three further issues concerning future supply of land-won sand and gravel identified in Chapter 2 that will require monitoring by Devon County Council are:
 - the renewal or otherwise of the planning permissions identified in Table 6 that are due to expire in the early part of the Devon Minerals Plan period, together with the potential for permissions to lapse in the event of non-submission of schemes required under Schedule 14 of the Environment Act 1995;
 - maintaining the supply of the different sands and gravels required to deliver the necessary range of aggregate products, notably the higherspecification materials from crushed gravel; and
 - the relationship between the distribution of sand and gravel reserves and the approach to be pursued in Devon County Council's Minerals Plan to the spatial pattern of aggregates supply.

Marine Aggregates

6.2.7 Comparison of actual and licensed rates of dredging within the Bristol Channel indicates that there is scope for a significant increase in the volume of marine sand and gravel to be achieved. Provided that wharves in North Devon remain available for the landing of dredged materials, the maintenance of the recent level of supply or a significantly increased level of up to double the rate identified in Table 11, appears to be achievable.

Secondary Aggregates

6.2.8 The continued or increased supply of secondary aggregates through the processing of by-products arising from Devon's resources of china clay, ball clay and slate is dependent on the continued availability of the source materials. While the china clay operations at Lee Moor that supply the bulk of Devon's secondary aggregates have contracted in recent years, they remain a source of 'as dug' by-products that is being supplemented through the excavation of previously-tipped materials, and a new operator has commenced processing in 2015. Working of ball clay in the Bovey Basin remains buoyant, while the small slate quarry at Mill Hill has extensive waste tips that can be re-worked to supplement by-products from building stone processing.

Recycled Aggregates

6.2.9 As indicated in paragraph 3.4.3, the level of supply of recycled aggregates is influenced by the volume of arisings of CDEW and the proportion of this waste that is recycled for aggregate use. A potential constraint on increased production is the availability of adequate capacity at recycling facilities located

- in close proximity to sources of CDEW and markets for the recycled aggregates derived from that waste.
- 6.2.10 The limited information available suggests that Devon's fixed CDEW recycling facilities have adequate capacity for current and potentially greater levels of recycled aggregates production. Figure 9 indicates that the distribution of these sites reflects the location of the major population centres in Devon that will be the sources of CDEW and markets for the aggregates produced.

Transportation Infrastructure

6.2.11 Wharves in Plymouth have adequate spare capacity to cater for any increase that may occur in the use of the port for inward or outward movement of aggregates by sea, but the availability of these wharves, together with others in Devon that handle or could handle aggregates, should be safeguarded through relevant MPAs' Minerals/Local Plans. Similarly, the railheads currently or recently used for the limited volumes of aggregates transported to and from Devon by rail should be safeguarded to maintain their potential.

Implications for Individual Mineral Planning Authorities

6.2.12 Each of Devon's MPAs is providing its own minerals planning policy, either as part of its Local Plan or through a 'stand-alone' Minerals Plan. Since the distribution of mineral resources and supporting infrastructure across Devon is uneven, not all of the requirements for future provision arising from this LAA are relevant to each of the five MPAs. Table 12 therefore provides a summary of the issues identified above and identifies the MPA(s) to which each is relevant.

Issue		4.5			
(■ – issue is of relevance to MPA)	Dartmoor	Devon CC	Exmoor	Plymouth	Torbay
Safeguarding of crushed rock reserves and					
processing capacity					
Provision for further supply of high-					
specification crushed rock aggregates					
Safeguarding of sand & gravel reserves and					
provision for further resources					
Safeguarding of wharf capacity for marine					
aggregates					
Maintaining availability of resources and					
processing capacity for secondary					
aggregates					
Maintaining processing capacity for					
recycled aggregates					
Safeguarding of infrastructure for movement					
of aggregates by rail or sea					

Table 12: Implications of the Local Aggregate Assessment for Devon's MPAs

6.2.13 The LAA has identified that Exmoor National Park does not currently produce any form of aggregate, rather it is reliant on imports from the surrounding MPA areas. Given National Park purposes and the geology of the area, and the lack of scope for exceptional circumstances to apply, it is envisaged that

no significant level of aggregate production will occur in Exmoor in the foreseeable future. Similarly, Torbay does not produce land-won aggregates and relies on materials from elsewhere, but it does accommodate an operation producing recycled aggregates.

- 6.2.14 Plymouth and Dartmoor National Park each have one operational crushed rock quarry, with a further quarry within Dartmoor (Meldon) having been mothballed. Each of these authorities therefore contributes to Devon's crushed rock production and landbank, with both of the operational quarries also producing recycled aggregates. These two authorities are required to make provision for the safeguarding of their reserves of crushed rock aggregates, together with ensuring the availability of infrastructure for the sustainable transportation of aggregates the Cattewater wharves in the case of Plymouth, and the mothballed Meldon railhead within Dartmoor.
- 6.2.15 Devon County Council shares responsibility for crushed rock production, recycled aggregates and rail and sea transportation with the other MPAs. However, it has the only capacity in the county for production of land-won sand and gravel, high-specification aggregates and secondary aggregates, and provides the only wharfage in Devon used for the landing of marine aggregates.
- 6.2.16 While not included in Table 12, Somerset County Council shares some responsibility (as provided for in its Minerals Plan) for the safeguarding of sand and gravel resources and provision for their supply.

7. References

Atkins (2015) Linhay Hill Quarry Extension: Revised Request for Scoping Opinion. Exeter: Atkins.

http://www.linhayhillquarryextension.co.uk/images/Linhay-Hill-Quarry-Extension-Scoping-Request-Rev-2w.pdf

British Geological Survey (2007) *Mineral Planning Factsheet – Construction Aggregates*. Keyworth: BGS/NERC.

http://www.bgs.ac.uk/mineralsuk/planning/mineralPlanningFactsheets.html

The Crown Estate (2014) *Marine Aggregates: The Crown Estate Licences – Summary of Statistics 2014.* London: The Crown Estate. http://www.thecrownestate.co.uk/media/476134/ei-marine-aggregate-statistics-2014.pdf

DCLG (2009) National and regional guidelines for aggregates provision in England 2005-2020. London: HMSO.

http://www.communities.gov.uk/publications/planningandbuilding/aggregatesprovision2020

DCLG (2012) *National Planning Policy Framework*. London: HMSO. http://www.communities.gov.uk/publications/planningandbuilding/nppf

Defra (undated) Construction and demolition waste, England – Total waste generation 2008-2010. [online] Available at: https://www.gov.uk/government/publications/construction-and-demolition-waste

Devon County Council (2015) *Devon Minerals Plan Pre-submission Consultation*. Exeter: DCC

https://new.devon.gov.uk/planning/planning-policies/minerals-and-waste-policy/devonminerals-plan/have-your-say-devon-minerals-plan

Devon Stone Federation (2012) *The attributes of sand and gravel (Quartzite) derived from the Budleigh Salterton Pebble Beds.* [email] (personal communication, 28 November 2012)

Dorset County Council (2015) *Draft Mineral Sites Plan.* Dorchester: DCC. https://www.dorsetforyou.com/mineral-sites

HM Treasury (2014) *National Infrastructure Plan 2014*. London: HMSO. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/381884/290289 5_NationalInfrastructurePlan2014_acc.pdf

HM Treasury (2015) *Spending Review and Autumn Statement 2015*. London: HMSO. https://www.gov.uk/government/publications/spending-review-and-autumn-statement-2015-documents

Mineral Products Association (undated) *Marine Aggregates*. [online] http://www.mineralproducts.org/prod_agg_mar01.htm

Mineral Products Association (2015) *Industry at a Glance Data Workbook*. [online] http://www.mineralproducts.org/news_publications01.htm

Planning Officers Society and Mineral Products Association (2015) *Practice Guidance on the Production and Use of Local Aggregate Assessments* [online] http://www.mineralproducts.org/documents/LAA_Guidance.pdf

Scrivener, R & Miles, A J (2010) Assessment of Sand & Gravel, Crushed Rock and Secondary Aggregate Resources in the County of Devon. Exeter: Jacobs. http://www.devon.gov.uk/assessment-of-aggregate-resources.htm

SLR Consulting Ltd (2015) *Proposed Extraction of Sand & Gravel at Straitgate Farm, Devon and Retention of Quarry Processing Plant at Blackhill Quarry, Woodbury, Devon: Environmental Statement Volume 2.* Sheffield: SLR. https://planning.devon.gov.uk/PlanDisp.aspx?AppNo=DCC/3774/2015

Somerset County Council (2015) *Somerset Minerals Plan.* Taunton: Somerset County Council.

http://www.somerset.gov.uk/policies-and-plans/plans/somerset-minerals-plan/

Thompson, A, Burrows, A, Flavin, D & Walsh, I (2004) *The Sustainable Use of High Specification Aggregates for Skid Resistant Road Surfacing in England.* East Grinstead: Capita Symonds.

http://www.sustainableaggregates.com/library/docs/samp/l0057 samp 1 039

APPENDIX A: AGGREGATE FACILITIES IN DEVON

A.1 Table 13 provides details of the land-won aggregate quarries, processing facilities for secondary and recycled aggregates and facilities for transportation of aggregates within Devon that were operational during 2014, together with inactive aggregate quarries that retain permitted reserves⁸.

Land-won Aggregate Quarries – Operational in 2014					
MPA	Key ⁹	Quarry	Operator	Mineral	
DCC	1	Bableigh Wood	D E & R Chance	Sandstone	
DCC	2	Babcombe Copse	Harleyford Aggregates	Sand & Gravel	
DCC	3	Beam	Torrington Stone	Sandstone	
DCC	4	Blackhill ¹⁰	Aggregate Industries	Sand & Gravel	
DCC	5	Bray Valley	Hanson	Sandstone	
DCC	6	Hearson	G Horrell	Sandstone	
DCC	7	Knowle	Faheys Concrete	Sandstone	
DNPA	8	Linhay Hill	E & J W Glendinning	Limestone	
PCC	9	Moorcroft	Aggregate Industries	Limestone	
DCC	10	Newbridge	Newbridge Stone	Sandstone	
DCC	11	Rockbeare Hill	Aggregate Industries	Sand & Gravel	
DCC	12	Stoneycombe	Aggregate Industries	Limestone	
DCC	13	Town Farm	Hanson	Sand & Gravel	
DCC	14	Uplyme	E & J W Glendinning ¹¹	Sand & Gravel	
DCC	15	Venn Ottery	Aggregate Industries	Sand & Gravel	
DCC	16	Vyse	Braunton Aggregates	Sandstone	
DCC	17	Westleigh	Aggregate Industries	Limestone	
DCC	18	Whitecleaves	Gilpin Demolition	Dolerite	
DCC	19	Zig Zag	Harleyford Aggregates	Sand & Gravel	
Land-v	von Agg	regate Quarries – Ina	ctive in 2014		
MPA	Quarry	у	Operator	Mineral	
DCC	Beer		Hanson	Chalk	
DCC	Haldor		RF Aggregates (SW)	Sand & Gravel	
DCC	Hillhea	ıd	Aggregate Industries	Sand & Gravel	
DNPA	Meldor	า	Aggregate Industries	Dolerite/Hornfels	
DCC	Plaisto	W	Hanson	Sandstone	
DCC	Trusha	am	Hanson	Dolerite	
DCC	Venn		Aggregate Industries	Sandstone	
Secondary Aggregate Processing Facilities					
MPA	Key ¹²		Operator	Resource	
DCC	Α	Headon	Tarmac	China clay waste	
DCC	В	Lee Moor	Aggregate Industries	China clay waste	
DCC	С	Mill Hill Quarry	Mill Hill Quarries Ltd	Slate waste	
DCC	D	Preston Manor	Sibelco	Ball clay sand	

⁸ Dormant quarries that would require the submission of a new scheme of working conditions prior to their reopening are omitted from the list, as are quarries with no remaining reserves that are considered to have closed permanently.

⁹ The key relates to Figure 2.

¹⁰ Blackhill Quarry processes materials imported from Venn Ottery and Rockbeare Hill Quarries

¹¹ E & JW Glendinning remove sand and gravel from a stockpile at the site; however, working of the quarry for chalk is undertaken by another operator.

¹² The keys for secondary and recycled aggregate sites relate to Figure 9

Recycl	ed Aggı	regate Processing Fac	ilities		
MPA	Key	Site	Operator		
DCC	1	Bableigh Wood	D E & R Chance		
DCC	2	Challonsleigh	Dorton Group		
DCC	3	Coventry Farm	ABC Siddalls Skip Hire		
DCC	4	Dittisham	D B Skips		
DCC	5	Fosterville	Fosterville Ltd		
DCC	6	Hayedown	The Sparling Group		
DCC	7	Hill Barton	A E Stuart & Sons		
DCC	8	Holmacott	John Coles Contractors		
DCC	9	Jersey Farm	John Luffman Group		
DCC	10	Johnsland	Okehampton & Crediton Skip Hire		
DNPA	11	Linhay Hill Quarry	E & J W Glendinning Ltd		
DCC	12	Little Stowford	Greenaways		
PCC	13	Moorcroft Quarry	Aggregate Industries		
DNPA	14	Pitts Cleave Quarry	R P & S Heywood Haulage Ltd		
DCC	15	Stoneycombe Quarry	Aggregate Industries		
DCC	16	Strashleigh Hams	Jeremy Bishop Haulage Ltd		
DCC	17	Trood Lane	B T Jenkins Ltd		
DCC	18	Westleigh Quarry	Aggregate Industries		
TC	19	Yalberton Tor Quarry	R F Aggregates		
DCC	20	Yelland	Notts Contractors Ltd		
		nsportation Facilities			
MPA	Site		Mineral Operator	Facility	
DCC	Appledore Wharf		Evans Transport	Wharf	
DCC	Bidna Wharf		Hanson Marine	Wharf	
DCC	Exeter St Davids		Hanson	Rail siding	
PCC			Aggregate Industries	Wharf	
DCC	•	nouth Dock	Dock Hanson Wharf		
DCC	Yelland	d Wharf	Notts Contractors Wharf		

DCC Devon County Council

DNPA Dartmoor National Park Authority

PCC Plymouth City Council

TC Torbay Council

Table 13: Aggregate Sites and Transportation Facilities in Devon

APPENDIX B: RECYCLED AGGREGATES DATA

- B.1 The approach to the calculation of sales figures for recycled aggregates in previous iterations of the Devon LAA was explained in paragraphs A.7 to A.14 of the 1st LAA. This method recognised the lack of robust data for recycled aggregates, and used assumptions on Devon's share of national and regional production to develop local figures.
- B.2 However, the lack of available data on recycled aggregates at a national level since 2010 has resulted in the 1st and 2nd iterations of the Devon LAA assuming a continued level of recycled aggregates production of 1.12 million tonnes up to 2012. This is considered to be a less than robust approach, and an alternative methodology based on a local survey was therefore undertaken for 2013, based on survey forms being sent to site operators and assumptions made regarding site capacity and the contribution of temporary recycling sites.
- B.3 For 2014 data, survey forms were sent to the operators of the 20 facilities in Devon undertaking the recycling of construction, demolition and excavation waste for recycled aggregates. The form included questions on the tonnage of recycled aggregates sold from the site in 2014, together with the range and destinations of materials sold.
- B.4 Completed forms were received from only 7 sites, giving a figure for total recycled aggregates sold of 135,571 tonnes. Due to the low level of response, it is considered unreliable to extrapolate a recycled aggregates total for Devon from the data received. However, five of the sites had previously returned survey forms for 2013, and these show a combined increase in sales of recycled aggregates from 2013 to 2014 of 7%. This level of growth is reflected in comments accompanying the survey forms that sales for some operators have risen, in one case by 20% and others by small amounts, with the remainder having seen sales being static.
- B.5 It is therefore proposed to assume a 7% increase over the 2013 recycled aggregates figure (894,375 tonnes), giving a rounded figure of 957,000 tonnes for 2014.

APPENDIX C: CONSULTATION ON THE LAA

- C.1 A first draft of this LAA was provided by Devon County Council to the other Devon MPAs and, in respect of sand and gravel, to Cornwall Council and Somerset County Council, for their consideration in advance of the LAA being forwarded to the South West AWP. Minor amendments were made as a result of comments from Cornwall Council.
- C.2 The second draft of the LAA was forwarded to the South West AWP for circulation amongst its members, and also to the Devon Stone Federation which represents several of the county's aggregate operators. A third draft was forwarded to the AWP prior to its meeting on 25th January 2016 to correct minor errors and add reference to the sand and gravel memorandum of understanding.
- C.3 The South West AWP provided the following comments on the draft LAA:

The 4th Devon LAA incorporating data from 2005-2014 was discussed at the meeting of the SWAWP on 25th January 2016.

With regard to sand and gravel, support was received from relevant planning authority members of the SWAWP for the cooperation between Devon County Council, Somerset County Council and Cornwall Council to maintain supply of sand and gravel in those areas.

The SWAWP has no other comments to make.

APPENDIX D: EXTRACT FROM SAND AND GRAVEL MEMORANDUM OF UNDERSTANDING

- D.1 To provide a framework for the future supply of sand and gravel in Devon, Somerset and Cornwall, the three mineral planning authorities published a memorandum of Understanding in November 2015. The following extract outlines the joint arrangements for future supply and monitoring:
 - 4.1 The NPPF requires MPAs to prepare a LAA, individually or jointly, based on an average of ten years' sales, and to maintain a landbank (calculated using the rate of supply in the LAA) of at least seven years for sand and gravel. Given the characteristics of sand and gravel extraction in Somerset and Cornwall outlined in Section 2, it is impractical for those counties to individually meet this requirement as:
 - Somerset has seen no extraction during the past 10 years, while Cornwall's limited production to 2006 was derived from a single site and confidentiality considerations prevent separate publication of its output;
 - the absence of any existing permitted land-won (primary) sand and gravel reserves in Somerset and Cornwall prevents calculation of a landbank for either county; and
 - the granting of a new permission for sand and gravel resources in either of those two counties at one or two sites would not enable identification of a separate landbank for confidentiality reasons.
 - 4.2 Cornwall, Devon and Somerset each has significant crushed rock production and, in the case of the first two counties, secondary aggregate sales that warrant preparation of separate LAAs for each county to reflect its specific characteristics. However, a joint approach for land-won sand and gravel is required to address the limitations identified in 4.1.
 - 4.3 This memorandum therefore proposes that:
 - any land-won sand and gravel sales and reserves in Cornwall and Somerset will be combined with those arising in Devon and published in an aggregated form for the three counties in the annual Devon LAA;
 - Cornwall Council and Somerset County Council will cooperate in preparation of the Devon LAA by collecting and providing data on sales and reserves of land-won sand and gravel as may occur within their counties;
 - Devon County Council will continue to publish land-won sand and gravel data for the three counties within the Devon LAA and to provide these data to the South West Aggregate Working Party for regional monitoring purposes;

- Somerset County Council will contribute to Devon's land-won sand and gravel landbank through implementation of Policy SMP4 of the Somerset Minerals Plan, recognising that delivery of new resources in Somerset will not be required until such time as supply cannot be maintained from Town Farm in Devon;
- there is no requirement for any further contribution to sub-regional supply of land-won sand and gravel from within Cornwall; and
- the memorandum will be reviewed annually through each MPAs Monitoring Report and any necessary amendments jointly agreed.